Военное образование в России

Новости и учебные материалы

Раздел 2. Двигатели внутреннего сгорания

 

Общее устройство и рабочий процесс двигателей

2.1 Классификация, общее устройство и основные параметры двигателей

 

На военной автомобильной технике устанавливаются двигатели внутреннего сгорания. Процесс сгорания топлива с выделением теплоты и превращение ее в механическую работу происходит непосредственно в цилиндрах этих двигателей.

Двигатели внутреннего сгорания классифицируют:

- по способу воспламенения рабочей смеси – на двигатели с принудительным воспламенением рабочей смеси от электрической искры и двигатели с самовоспламенением (дизели);

- по способу смесеобразования – на двигатели с внешним смесеобразованием (карбюраторные, с впрыскиванием топлива во впускной коллектор), у которых горючая смесь приготовляется вне цилиндров, и двигатели с внутренним смесеобразованием (дизели и двигатели с принудительным воспламенением и впрыскиванием топлива в цилиндр), у которых смесеобразование происходит внутри цилиндров;

- по способу организации рабочего цикла – на четырех- и двухтактные;

- по числу цилиндров – на одно-, двух- и многоцилиндровые;

- по расположению цилиндров – на двигатели с вертикальным или наклонным расположением цилиндров в один ряд, на V-образные двигатели с различным углом развала, в том числе под углом 180°, которые называются оппозитными;

- по виду применяемого топлива – на двигатели, использующие бензин, газ, дизельное и другие виды топлив (многотопливные).

Двигатели внутреннего сгорания состоят из механизмов и систем, общее устройство и принцип работы которых целесообразно рассмотреть на примере четырехтактного одноцилиндрового дизельного двигателя (рисунок 2.1). Основными частями такого двигателя являются кривошипно-шатунный и газораспределительный механизмы, а также система питания, смазочная система и система охлаждения.

Двигатели внутреннего сгорания

1 – шестерни привода кулачкового вала; 2 – кулачковый вал; 3 – толкатели; 4 – штанги; 5 – поршень; 6 – головка цилиндра; 7 – глушитель; 8 – коромысла; 9 – пружины клапанов; 10 – воздушный фильтр; 11 – впускной клапан; 12 – форсунка; 13 – выпускной клапан; 14 – поршневые кольца; 15 – рубашка охлаждения; 16 – палец; 17 – цилиндр; 18 – шатун; 19 – маховик; 20 – картер; 21 – коленчатый вал; 22 – смазочная ёмкость

Рисунок 2.1 - Четырехтактный одноцилиндровый дизельный двигатель

Кривошипно-шатунный механизм воспринимает давление газов и преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Состоит из цилиндра, головки, закрывающей цилиндр сверху, поршня с кольцами и пальцем, который соединяет поршень с верхней головкой шатуна. Нижняя головка шатуна соединена с коленчатым валом, на заднем конце которого установлен маховик. Коленчатый вал вращается в подшипниках скольжения, расположенных в картере. Смазочная ёмкость картера используется как резервуар для масла.

Газораспределительный механизм обеспечивает своевременный впуск горючей смеси или воздуха (дизель) в цилиндр и удаление из него продуктов сгорания. Этот механизм приводится в действие от коленчатого вала через шестеренчатую, цепную или клиноременную передачи. При этом распределительный вал, воздействуя на толкатели, штанги и коромысла, открывает впускной или выпускной клапаны, закрытие которых происходит под действием пружин.

Система питания предназначена для хранения, очистки и подачи топлива в цилиндры, а также очистки и подачи воздуха и отвода продуктов сгорания. При помощи насоса в дизелях топливо из топливного бака подается в топливный насос высокого давления, который в определенный момент времени необходимое количество топлива, под высоким давлением через форсунку подает в цилиндр двигателя, где топливо смешивается с горячим воздухом, образуя горючую смесь, которая затем самовоспламеняется и сгорает. В систему питания также входят фильтры для очистки воздуха и топлива, выпускной газопровод с глушителем шума выпуска.

Смазочная система обеспечивает подачу масла для смазки взаимодействующих деталей и отвод продуктов износа. Состоит из насоса, маслоподводящих каналов, фильтров для очистки масла и радиатора для его охлаждения.

Система охлаждения поддерживает заданный температурный режим работы двигателя, обеспечивая отвод тепла от сильно нагревающихся при сгорании горючей смеси деталей цилиндропоршневой группы и клапанов. Система охлаждения бывает жидкостная или воздушная. Жидкостная система охлаждения состоит из рубашки-полости, внутри которой циркулирует охлаждающая жидкость, жидкостного насоса, термостата, вентилятора и радиатора.

При воздушной системе охлаждения заданный температурный режим достигается охлаждением ребер, имеющихся на цилиндре и его головке, потоком воздуха, который создается мощным вентилятором.

Система зажигания установлена только на двигателях с принудительным воспламенением. Она предназначена для воспламенения рабочей смеси в цилиндрах двигателя. Система зажигания состоит из источника электрической энергии (аккумуляторная батарея, генератор), приборов, преобразующих ток низкого напряжения в ток высокого напряжения, соединительных проводов и свечей зажигания, электрическая искра которых воспламеняет рабочую смесь.

Взаимодействие механизмов и систем дизельного двигателя происходит следующим образом. Когда поршень опускается вниз, воздух через открытый впускной клапан поступает в цилиндр. При движении поршня вверх воздух сжимается, его температура повышается до 400-500 °С. Когда поршень доходит до крайнего верхнего положения, в цилиндр впрыскивается топливо, смешиваясь с горячим воздухом, образуя горючую смесь, которая затем самовоспламеняется и сгорает. В процессе сгорания образуются газы, имеющие высокую температуру и большое давление. Под действием давления расширяющихся газов поршень опускается вниз и через шатун приводит во вращение коленчатый вал. Таким образом, происходит преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Затем поршень двигается вверх и выталкивает отработавшие газы через открывающийся выпускной клапан.


2.2 Рабочие циклы четырехтактных двигателей и показатели их работы

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на военной автомобильной технике не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторных дизелях. Это связано, прежде всего, с тем, что они имеют сравнительно большой расход топлива и недостаточное наполнение горючей смесью из-за плохой очистки цилиндров от отработавших газов.

На военной автомобильной технике применяются двигатели, работающие по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.

В четырехтактном дизеле (рисунок 2.2) рабочие процессы происходят следующим образом.

дизель

Такт впуска (рисунок 2.2, а). При движении поршня 2 от ВМТ к НМТ вследствие образующегося разрежения из воздухоочистителя 4 в полость цилиндра 7 через открытый впускной клапан 5 поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0,08-0,095 МПА, а температура 40-60 °С.

Рисунок 2.2 - Рабочий цикл четырехтактного дизеля

Такт сжатия (рисунок 2.2, б). Поршень движется от НМТ к ВМТ. Впускной 5 и выпускной 6 клапаны закрыты, вследствие этого перемещающийся вверх поршень 2 сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 550-700°С при давлении воздуха внутри цилиндра 4,0-5,0 МПа.

Такт расширения, или рабочий ход (рисунок 2.2, в). При подходе поршня к ВМТ в цилиндр через форсунку 3 впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления 1. Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6-9 МПа, а температура – 1800-2000 °С. Под действием давления газов поршень 2 перемещается от ВМТ к НМТ. Происходит рабочий ход. Около НМТ давление снижается до 0,3-0,5 МПа, а температура – до 700-900 °С.

Такт выпуска (рисунок 2.2, г). Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газа снижается до 0,11-0,12 МПа, а температура – до 500-700 °С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Рабочие циклы четырехтактного дизеля и карбюраторного двигателя существенно отличаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр карбюраторного двигателя при такте впуска поступает не воздух, а горючая смесь, приготовленная в карбюраторе, которая в конце такта сжатия воспламеняется от электрической искры системы зажигания. В карбюраторном четырехтактном одноцилиндровом двигателе (рисунок 2.4) рабочий цикл происходит следующим образом.

Рабочие циклы четырехтактного дизеля

Такт впуска (рисунок 2.3, а). Поршень 1 находится в ВМТ и по мере вращения коленчатого вала 9 (за один его полуоборот) перемещается от ВМТ к НМТ. При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре 2 образуется разрежение, равное 0,07-0,095 МПа, в результате чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной трубопровод 3 в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75-125 °С.

Рисунок 2.3 - Рабочий цикл четырехтактного одноцилиндрового карбюраторного двигателя

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотистых карбюраторных двигателей находится в пределах 0,65-0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия (рисунок 2.3, б). После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от НМТ к ВМТ. Впускной клапан 4 закрывается, а выпускной 6 – остается закрытым. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от конструкции двигателя давление в конце такта сжатия может составлять 0,8-1,5 МПа, а температура газов 300-450 °С.

Такт расширения, или рабочий ход (рисунок 2.3, в). В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи 5, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от ВМТ к НМТ. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5-5 МПа, а температура газов 2100-2400 °С.

При такте расширения шарнирно связанный с поршнем шатун 8 совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3-0,75 МПа, а температура – до 900-1200 °С.

Такт выпуска (рисунок 2.3, г). Коленчатый вал 9 через шатун перемещает поршень от НМТ к ВМТ. При этом выпускной клапан 6 открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубо-провод 7. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105-0,120 МПа, а температура газов в начале такта выпуска составляет 750-900 °С, понижаясь к его концу до 500-600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.


2.3 Показатели работы двигателя

Работа, совершаемая газами в единицу времени внутри цилиндра двигателя, называется индикаторной мощностью.

Мощность, получаемая на коленчатом валу двигателя, называется эффективной мощностью. Она меньше индикаторной на значение мощности, затрачиваемой на насосные потери и на трение в кривошипно-шатунном и газораспределительном механизмах двигателя, а также на приведение в действие вентилятора, жидкостного насоса и других вспомогательных устройств.

Таким образом, эффективная мощность меньше, чем индикаторная мощность, из-за механических потерь, расходуемых в механизмах и системах двигателя. На основании этого механическим коэффициентом полезного действия (КПД) двигателя называют отношение эффективной мощности к индикаторной.

Механический КПД карбюраторных двигателей составляет 0,70-0,85, а дизелей – 0,73-0,87.

Мощностные показатели двигателя в значительной мере определяются количеством теплоты, превращенным в полезную работу. Степень использования теплоты, введенной в двигатель с топливом, оценивают эффективным КПД – hе, который представляет собой отношение количества теплоты Qe, превращенной в эффективную работу, к количеству теплоты Qt, выделившейся в результате сгорания топлива:

he=Qe/Qt. (2.1)

Для карбюраторных двигателей hе = 0,23-0,30, для дизелей hе = 0,28-0,40.

К показателям, характеризующим топливную экономичность двигателя, относятся расходы топлива. Часовой расход топлива GT показывает количество топлива в килограммах, потребляемое двигателем на данном режиме работы за 1 ч. Для оценки экономичности двигателя обычно пользуются эффективным удельным расходом топлива gе, представляющим собой отношение часового расхода топлива GT к эффективной мощности двигателя Ne:

gе = GT /Ne·103. (2.2)

Для карбюраторных двигателей ge = 300-340 г/(кВт∙ч), для дизелей


2.4 Многоцилиндровые двигатели

Многоцилиндровые двигатели состоят как бы из нескольких одноцилиндровых двигателей, конструктивно объединенных в одно целое и имеющих один общий коленчатый вал. В таком двигателе за два оборота коленчатого вала рабочих ходов будет столько, сколько у него цилиндров (а так как два оборота коленчатого вала соответствуют 720°, то такты рабочего хода будут чередоваться через равные угловые интервалы θ в зависимости от числа цилиндров i), следовательно, θ = 720/i. Например, в четырех-, шести- и восьмицилиндровых двигателях рабочие ходы будут происходить соответственно через 180°, 120° и 90° поворота коленчатого вала.

Последовательность чередования одноименных тактов в цилиндрах двигателя в течение его рабочего цикла называется порядком работы двигателя. Принято указывать порядок работы двигателя по чередованию тактов рабочего хода, начиная с первого цилиндра. Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, у коленчатого вала рядного четырехцилиндрового двигателя кривошипы расположены попарно под углом 180°, два крайних под углом 180° к двум средним. Соответственно поршни цилиндров 1 и 4 при работе двигателя перемещаются одновременно в одном направлении, а поршни цилиндров 2 и 3 – в противоположном.

Порядок работы четырехцилиндровых двигателей может быть 1-3-4-2 (ВАЗ, «Москвич» и др.), или 1-2-4-3 (ГАЗ-3110 «Волга», УАЗ-417 и др.).

Четырехцилиндровый двигатель может иметь и другой порядок работы при том же расположении кривошипов коленчатого вала, но при другом порядке открытия и закрытия клапанов, что зависит от конструкции механизма газораспределения.

Наиболее распространенным порядком работы шестицилиндрового рядного двигателя является 1-5-3-6-2-4. Для шестицилиндровых V-образных двигателей с развалом цилиндров 90° принят порядок работы 1-4-2-5-3-6.

Чередование тактов в восьмицилиндровом V-образном двигателе

На военной автомобильной технике широкое применение получили дизельные и карбюраторные восьмицилиндровые двигатели с V-образным расположением цилиндров. Это обстоятельство обусловлено тем, что такая компоновочная схема имеет ряд преимуществ по сравнению с рядными двигателями. К преимуществам таких двигателей следует отнести их меньшую высоту и габаритную длину, что дает возможность улучшить компоновку автомобиля в целом.

Рисунок 2.4 - Чередование тактов в восьмицилиндровом V-образном двигателе с порядком работы 1-5-4-2-6-3-7-8

На грузовых автомобилях КамАЗ-4310, Урал-4320, ЗИЛ-131, ГАЗ-66 и других армейских машинах установлены восьмицилиндровые V-образные двигатели, как дизельные, так и карбюраторные. Цилиндры на этих двигателях расположены в два ряда по ходу движения автомобиля. Угол развала между рядами цилиндров составляет 90°. Один ряд цилиндров несколько смещен относительно другого ряда, что обусловлено установкой двух шатунов на каждую шейку коленчатого вала, каждый из которых связан с поршнями правого и левого ряда цилиндров.

Чередование тактов в восьмицилиндровом V-образном двигателе с порядком работы 1-5-4-2-6-3-7-8 приведено на рисунке 2.4. Это обеспечивает не только равномерное вращение коленчатого вала, но и наилучшее уравновешивание сил инерции, возникающих в процессе работы восьмицилиндрового двигателя.


2.5 Технические характеристики

Двигатели КамАЗ-740.11 и ЯМЗ-238 четырехтактные с воспламенением от сжатия, жидкостного охлаждения, с V-образным расположением восьми цилиндров. Двигатель УМЗ-417 карбюраторный, четырехтактный с искровым воспламенением, жидкостного охлаждения, с рядным расположением четырех цилиндров. Основные конструктивные данные и параметры двигателей приведены в технической характеристике (табл. 2.1).

Таблица 2.1 - Техническая характеристика двигателей КамАЗ-740.11; ЯМЗ-238 и УМЗ-417

Наименование параметра,

характеристика и единица

измерения

Модель

КамАЗ-740.11 ЯМЗ-238

УМЗ-417

Тип двигателя

Четырехтактный, дизель

Четыретактный, с принудительным воспламенением

Четыретактный, с принудительным воспламенением

Тип рабочего процесса

Объемное смесеобразование в полуразделенной камере сгорания

Смесеобразование в карбюраторе

Смесеобразование в карбюраторе

Число и расположение цилиндров

8, V-образное, с углом развала 90°

4-рядное

4-рядное

Порядок работы цилиндров

1-5-4-2-6-3-7-8

1-5-4-2-6-3-7-8

1-2-4-3

Направление вращения коленчатого вала

Правое (против часовой стрелки, если смотреть со стороны маховика)

аналогично

Диаметр цилиндров и ход поршня, мм

120х120

130х140

92х92

 

Рабочий объем, л

10,85

4,86

2,445

 

Номинальная мощность,

кВт (л. с.)

167 (240)

176,5 (240)

67 (80)

Максимальный крутящий момент, Н×м (кгс×м)

834 (85)

(90)

(17,2)

 

Минимальный удельный расход топлива, г/лс.∙ч

152

175

175

Частота вращения коленчатого вала, об/мин:

номинальная;

при максимальном крутящем моменте

2200

1400

2250

1500

4000

2400

Количество клапанов в головке цилиндра

2 (впускной и выпускной)

2 (впускной и выпускной)

Система наддува

Газотурбинная, с двумя турбокомпрессорами

нет

нет

 

Общие виды двигателей представлены на рисунке 2.5, 2.6, 2.7.

Двигатель КамАЗ-740.11

Рисунок 2.5 - Двигатель КамАЗ-740.11

Двигатель ЯМЗ-238

Рисунок 2.6 - Двигатель ЯМЗ-238

Двигатель УМЗ-417

Рисунок 2.7 - Двигатель УМЗ-417

You are here: Главная Лекции Автомобильная подготовка Раздел 2. Двигатели внутреннего сгорания